PERBANDINGAN ALGORITMA STEMMING PORTER / NAZIEF & ADRIANI STEMMING DOKUMEN TEKS BAHASA INDONESIA


Konferensi Nasional Sistem dan Informatika 2009; Bali, November 14, 2009  KNS&I09-036
196
PERBANDINGAN  ALGORITMA STEMMING PORTER DENGAN
ALGORITMA NAZIEF & ADRIANI UNTUK STEMMING DOKUMEN TEKS
BAHASA INDONESIA
Ledy Agusta
Fakultas Teknologi Informasi
Universitas Kristen Satya Wacana
ledyagusta@gmail.com
ABSTRACT
Information Retrieval (IR) is a process to retrieve relevant documents from set of documents in a database. Increasing
amount of text documents on internet is followed by the increase of the need for effective and efficient IR tools. Search
Engine is an application of IR system that depends on indexing and query expansion tools’s support. Stemming is a
process to transform all words in text document to their rootword form. Rootword then will be saved as index. Stemming
is also used for query expansion. The appropriate algorithm will give best performance to IR system, indexing and query
expansion. This research compares two Indonesian stemmers, Porter and  Nazief & Adriani. 30 Indonesian language text
documents have been evaluated. The evaluation of effectiveness and efficiency of the algorithms is conducted by counting
the stemming’s process time and precision. Based on the result of the evaluation we concluded that Nazief & Adriani is
more appropriate for linguistic purpose than Porter.
Keywords: Indonesian Stemmer, Porter, Nazief & Adriani
1. Pendahuluan
Pencarian informasi berupa dokumen teks atau yang dikenal dengan istilah Information Retrieval (IR) merupakan proses
pemisahan dokumen-dokumen yang dianggap relevan dari sekumpulan dokumen yang tersedia. Bertambahnya jumlah
dokumen teks yang dapat diakses di internet diikuti dengan meningkatnya kebutuhan pengguna akan perangkat pencarian
informasi yang efektif dan efisien. Efektif berarti user mendapatkan dokumen yang relevan dengan query yang
diinputkan. Efisien berarti waktu pencarian yang sesingkat-singkatnya.
Stemming adalah salah satu cara yang digunakan untuk meningkatkan performa IR dengan cara mentransformasi katakata dalam sebuah dokumen teks ke kata dasarnya. Algoritma Stemming untuk bahasa yang satu berbeda dengan
algoritma stemming untuk bahasa lainnya. Sebagai contoh Bahasa Inggris memiliki morfologi yang berbeda dengan
Bahasa Indonesia sehingga algoritma stemming untuk kedua bahasa tersebut juga berbeda. Proses stemming pada teks
berbahasa Indonesia lebih rumit/kompleks karena terdapat variasi imbuhan yang harus dibuang untuk mendapatkan root
word dari sebuah kata. Beberapa algoritma stemming Bahasa Indonesia telah dikembangkan sebelumnya. Penggunaan
algoritma stemming yang sesuai mempengaruhi performa sistem IR. Dalam penelitian ini akan dibandingkan dua
algoritma stemming yaitu algoritma Porter dan algoritma Nazief & Adriani.
 
Algoritma-algoritma stemming memiliki kelebihan dan kekurangannya masing-masing. Efektifitas algoritma stemming
dapat diukur berdasarkan beberapa parameter, seperti kecepatan proses, keakuratan, dan kesalahan. Dalam tulisan ini,
penulis akan membandingkan efektifitas algoritma Nazief dan Adriani dengan algoritma Porter untuk proses stemming
pada teks berBahasa Indonesia, sehingga akhirnya akan diketahui algoritma manakah yang lebih cepat, lebih akurat atau
yang lebih banyak melakukan kesalahan stemming. Tujuan penelitian ini adalah untuk membandingkan kemampuan dan
ketepatan algoritma Nazief & Adriani dengan algoritma Porter untuk proses stemming pada teks berBahasa Indonesia.
2.  Landasan Teori
2.1  Stemming
Stemming merupakan suatu proses yang terdapat dalam sistem IR yang mentransformasi kata-kata yang terdapat dalam
suatu dokumen ke kata-kata akarnya (root word) dengan menggunakan aturan-aturan tertentu. Sebagai contoh, kata
bersama, kebersamaan, menyamai, akan distem ke root wordnya yaitu “sama”. Proses stemming pada teks berBahasa
Indonesia berbeda dengan stemming pada teks berbahasa Inggris. Pada teks berbahasa Inggris, proses yang diperlukan
hanya proses menghilangkan sufiks. Sedangkan pada teks berbahasa Indonesia, selain sufiks, prefiks, dan konfiks juga
dihilangkan.
2.2  Penelitian Terdahulu
Algoritma stemming untuk beberapa bahasa telah dikembangkan, seperti Algoritma Porter untuk teks berbahasa
inggris
[2]
, Algoritma Porter untuk teks berbahasa Indonesia
[2]
, Algoritma Nazief & Adriani untuk teks berbahasa
Indonesia
[4]
. Konferensi Nasional Sistem dan Informatika 2009; Bali, November 14, 2009  KNS&I09-036
197
Algoritma yang dibuat oleh Bobby Nazief dan Mirna Adriani ini memiliki tahap-tahap sebagai berikut:
1. Cari kata yang akan distem dalam kamus. Jika ditemukan maka diasumsikan bahwa kata tesebut adalah root word.
Maka algoritma berhenti.
2. Inflection Suffixes (“-lah”, “-kah”, “-ku”, “-mu”, atau “-nya”) dibuang. Jika berupa particles (“-lah”, “-kah”, “-tah”
atau “-pun”) maka langkah ini diulangi lagi untuk menghapus Possesive Pronouns (“-ku”, “-mu”, atau “-nya”), jika
ada.
3. Hapus Derivation Suffixes (“-i”, “-an” atau “-kan”). Jika kata ditemukan di kamus, maka algoritma berhenti. Jika
tidak maka ke langkah 3a
a. Jika “-an” telah dihapus dan huruf terakhir dari kata tersebut adalah “-k”, maka “-k” juga ikut dihapus. Jika kata
tersebut ditemukan dalam kamus maka algoritma berhenti. Jika tidak ditemukan maka lakukan langkah 3b.
b. Akhiran yang dihapus (“-i”, “-an” atau “-kan”) dikembalikan, lanjut ke langkah 4.
4. Hapus Derivation Prefix. Jika pada langkah 3 ada sufiks yang dihapus maka pergi ke langkah 4a, jika tidak pergi ke
langkah 4b.
a. Periksa tabel kombinasi awalan-akhiran yang tidak diijinkan. Jika ditemukan maka algoritma berhenti, jika tidak
pergi ke langkah 4b.
b. For i = 1 to 3, tentukan tipe awalan kemudian hapus awalan. Jika root word belum juga ditemukan lakukan
langkah 5, jika sudah maka algoritma berhenti. Catatan: jika awalan kedua sama dengan awalan pertama
algoritma berhenti.
5. Melakukan Recoding.
6. Jika semua langkah telah selesai tetapi tidak juga berhasil maka kata awal diasumsikan sebagai root word. Proses
selesai.
Tipe awalan ditentukan melalui langkah-langkah berikut:
1. Jika awalannya adalah: “di-”, “ke-”, atau “se-” maka tipe awalannya secara berturut-turut adalah “di-”, “ke-”, atau
“se-”.
2. Jika awalannya adalah “te-”, “me-”, “be-”, atau “pe-” maka dibutuhkan sebuah proses tambahan untuk menentukan
tipe awalannya.
3. Jika dua karakter pertama bukan “di-”, “ke-”, “se-”, “te-”, “be-”, “me-”, atau “pe-” maka berhenti.
4. Jika tipe awalan adalah “none” maka berhenti. Jika tipe awalan adalah bukan “none” maka awalan dapat dilihat pada
Tabel 2. Hapus awalan jika ditemukan.
Tabel 1. Kombinasi Awalan Akhiran Yang Tidak Diijinkan
Awalan Akhiran yang tidak diijinkan
be- -i
di- -an
ke- -i, -kan
me- -an
se- -i, -kan
Tabel 2. Cara Menentukan Tipe Awalan Untuk Kata Yang Diawali Dengan “te-”
Following Characters
Set 1 Set 2 Set 3 Set 4
Tipe
Awalan
“-r-“ “-r-“ - - none
“-r-“ Vowel - - ter-luluh
“-r-“ not (vowel or “-r-”) “-er-“ vowel ter
“-r-“ not (vowel or “-r-”) “-er-“ not vowel ter-
“-r-“ not (vowel or “-r-”) not “-er-“ - ter
not (vowel or “-r-”) “-er-“ vowel - none
not (vowel or “-r-”) “-er-“ not vowel - te
Tabel 3. Jenis Awalan Berdasarkan Tipe Awalannya
Tipe Awalan Awalan yang harus dihapus
di- di-
ke- ke-
se- se-
te- te-
ter- ter-
ter-luluh ter Konferensi Nasional Sistem dan Informatika 2009; Bali, November 14, 2009  KNS&I09-036
198
Untuk mengatasi keterbatasan pada algoritma di atas, maka ditambahkan aturan-aturan dibawah ini:
1. Aturan untuk reduplikasi.
- Jika kedua kata yang dihubungkan oleh kata penghubung adalah kata yang sama maka root word adalah bentuk
tunggalnya, contoh : “buku-buku” root word-nya adalah “buku”.
- Kata lain, misalnya “bolak-balik”, “berbalas-balasan, dan ”seolah-olah”. Untuk mendapatkan root word-nya,
kedua kata diartikan secara terpisah. Jika keduanya memiliki root word yang sama maka diubah menjadi bentuk
tunggal, contoh: kata “berbalas-balasan”, “berbalas” dan “balasan” memiliki root word yang sama yaitu “balas”,
maka root word “berbalas-balasan” adalah “balas”. Sebaliknya, pada kata “bolak-balik”, “bolak” dan “balik”
memiliki root word yang berbeda, maka root word-nya adalah “bolak-balik”
2. Tambahan bentuk awalan dan akhiran serta aturannya.
-  Untuk tipe awalan “mem-“, kata yang diawali dengan awalan “memp-” memiliki tipe awalan “mem-”.
- Tipe awalan “meng-“, kata yang diawali dengan awalan “mengk-” memiliki tipe awalan “meng-”.
Algoritma kedua yang digunakan dalam sistem ini adalah Algoritma Porter. Adapun langkah-langkah algoritma ini
adalah sebagai berikut:
1. Hapus Particle,
2. Hapus Possesive Pronoun.
3. Hapus awalan pertama. Jika tidak ada lanjutkan ke langkah 4a, jika ada cari maka lanjutkan ke langkah 4b.
4. a. Hapus awalan kedua, lanjutkan ke langkah 5a.
b. Hapus akhiran, jika tidak ditemukan maka kata tersebut diasumsikan sebagai root word. Jika ditemukan maka
lanjutkan ke langkah 5b.
5. a. Hapus akhiran. Kemudian kata akhir diasumsikan sebagai root word
b. Hapus awalan kedua. Kemudian kata akhir diasumsikan sebagai root word.
Terdapat 5 kelompok aturan pada Algoritma Porter untuk Bahasa Indonesia ini. Aturan tersebut dapat dilihat pada Tabel
4 sampai Tabel 8.
Tabel 4. Aturan Untuk Inflectional Particle
Akhiran Replacement Measure Condition Additional Condition Contoh
-kah NULL 2 NULL bukukah
-lah NULL 2 NULL pergilah
-pun NULL 2 NULL bukupun
Tabel 5. Aturan Untuk Inflectional Possesive Pronoun
Akhiran Replacement Measure Condition Additional Condition Contoh
-ku NULL 2 NULL bukuku
-mu NULL 2 NULL bukumu
-nya NULL 2 NULL bukunya
Tabel 6. Aturan Untuk First Order Derivational Prefix
Awalan Replacement Measure Condition Additional Condition Contoh
meng- NULL 2 NULL mengukur Æ ukur
meny- S 2 V…* menyapu Æ sapu
men- NULL 2 NULL menduga Æ duga
mem- P 2 V… memaksaÆ paksa
mem- NULL 2 NULL membacaÆ baca
me- NULL 2 NULL merusak Æ rusak
peng- NULL 2 NULL pengukurÆ ukur
peny- S 2 V… penyapu Æ sapu
pen- NULL 2 NULL penduga Æ duga
pem- P 2 V… pemaksa Æ paksa
pem- NULL 2 NULL pembaca Æ baca
di- NULL 2 NULL diukur Æ ukur
ter- NULL 2 NULL tersapu Æ sapu
ke- NULL 2 NULL kekasih Æ kasih Konferensi Nasional Sistem dan Informatika 2009; Bali, November 14, 2009  KNS&I09-036
199
Tabel 7. Aturan Untuk Second Order Derivational Prefix
Awalan Replacement Measure Condition Additional Condition Contoh
ber- NULL 2 NULL  berlari Æ lari
bel- NULL 2  Ajar belajar Æ ajar
be- NULL 2  k*er bekerja Æ kerja
per- NULL 2 NULL  perjelas Æ jelas
pel- NULL 2  Ajar pelajar Æ ajar
pe- NULL 2 NULL  pekerja Æ kerja
Tabel 8. Aturan Untuk Derivational Suffix
Akhiran Replacement Measure Condition Additional Condition Contoh
-kan NULL 2
Prefix bukan anggota
{ke, peng}
tarikkan Æ tarik,
mengambilkan Æ ambil
-an NULL 2
prefix bukan anggota
{di, meng, ter}
makanan Æ makan,
perjanjian Æ janji
-i NULL 2
prefix bukan
anggota{ber, ke, peng}
Tandai Æ tanda, mendapati
Æ dapat
Proses stemming menggunakan Algoritma Porter dapat dilihat pada Gambar 1.
Gambar 1. Algoritma Porter
3. Metode Penelitian
Penelitian ini dilakukan dengan:
1. Untuk membandingkan performa masing-masing algoritma maka dibuat aplikasi sederhana proses stemming
menggunakan algoritma Porter dan Nazief & Adriani.
2. Menghitung  presisi dan waktu proses dari masing-masing algoritma.
3. Menguji menggunakan 30 dokumen sampel.
4. Hasil dan Pembahasan
Proses pembandingan algoritma Porter dengan Algoritma Nazief & Adriani dilakukan dengan membuat program
sederhana yang memproses dokumen teks inputan sehingga diketahui stem, waktu proses, presisi dari hasil stemming
dokumen tersebut.
4.1 Hasil Pengujian
Uji Coba algoritma dilakukan pada 30 dokumen teks Bahasa Indonesia dengan ukuran dokumen yang bervariasi. Hasil
uji coba dokumen teks yang dilakukan pada 30 dokumen teks dapat dilihat pada Tabel 9. Konferensi Nasional Sistem dan Informatika 2009; Bali, November 14, 2009  KNS&I09-036
200
Tabel 9. Tabel Waktu Proses dan Presisi Pada 30 Dokumen Teks
Algoritma Porter Algoritma Nazief & Adriani
No. Dokumen Teks
Jumlah
kata
Waktu Proses (det) Presisi (%) Waktu Proses (det) Presisi (%)
1. Paper Fungsi.txt 1854 1,518 89,7 86,264 95,9
2. Keyboard.txt 43 0,048 83,7 1,953 93
3. Makan.txt 9 0 88,9 0,352 100
4. Coba.txt 20 0,041 89,5 1,267 98
5. Abstrak.txt 104 0,05 80,8 4,246 87,5
6. Bab2.txt 1161 0,74 85,7 44,776 91,2
7. Bab1.txt 780 0,502 83,5 27,558 93,7
8. Kesimpulan & Saran.txt 352 0,23 81,8 12,848 91,8
9. Kuesioner.txt 193 0,129 89,6 8,891 93,3
10. Daftar Isi.txt 470 0,209 30,2 22,002 30,4
11. Etika di Milis1.txt 1428 0,602 82,2 62,418 89,8
12. Guidelines Perancangan.txt 2548 1,752 18 89,58 19
13. Penelitian.txt 205 1,141 57,1 8,133 59,5
14. PR.txt 319 0,209 35,1 13,797 97,8
15. Mbah Soyo.txt 651 0,507 88,6 25,492 98,2
16. Proses.txt 86 0,101 81,4 2,961 96,5
17. Reduplikasi.txt 47 0,039 78,7 2,203 95,7
18. Tata Tertib Sidang.txt 172 0,125 12,2 5,008 98,3
19. Hacker.txt 69 0,132 8,7 2,203 10,1
20. Kuesioner2.txt 147 0,132 27,2 6,914 27,9
21. Algoritma.txt 684 0,13 92,6 1,391 96,3
22. Etika Di Milis2.txt 677 0,275 85,4 29,406 95,7
23. Etika di Milis3.txt 784 0,515 38,4 29,156 93,3
24. Feedback.txt 73 0,471 90,4 2,443 98,6
25. Mamas.txt 161 0,16 81,4 6,592 97,5
26. Mailing List.txt 27 0,13 92,6 1,391 96,3
27. Masih Ada.txt 1439 0,945 87,1 54,093 94,8
28. Surat Peminjaman.txt 53 0,039 86,8 1,781 90,6
29. Tata Tertib Milis.txt 118 0,169 83,9 4,957 97,5
30. Optical Storage.txt 28 0,059 85,7 1,553 100
5. Kesimpulan
Berdasarkan perancangan dan implementasi program, maka diperoleh kesimpulan sebagai berikut:
- Proses stemming dokumen teks berBahasa Indonesia menggunakan Algoritma Porter membutuhkan waktu yang
lebih singkat dibandingkan dengan stemming menggunakan Algoritma Nazief & Adriani.
- Proses stemming dokumen teks berBahasa Indonesia menggunakan Algoritma Porter memiliki prosentase
keakuratan (presisi) lebih kecil dibandingkan dengan stemming menggunakan Algoritma Nazief & Adriani.
- Pada proses stemming menggunakan Algoritma Nazief & Adriani, kamus yang digunakan sangat mempengaruhi
hasil stemming. Semakin lengkap kamus yang digunakan maka semakin akurat pula hasil stemming. Konferensi Nasional Sistem dan Informatika 2009; Bali, November 14, 2009  KNS&I09-036
201
- Kamus yang digunakan mempengaruhi perhitungan presisi. Semakin lengkap kamus yang digunakan maka semakin
akurat pula nilai presisinya.
 
Daftar Pustaka
[1] Asian J., Williams H. E. dan Tahaghogi, S.M.M.. (2005).  Stemming Indonesian, Melbourne, RMIT University,
http://crpit.com/confpapers/CRPITV38Asian.pdf, diakses terakhir tanggal 25 April 2008.
[2] Fadillah Z. Tala, A Study of Stemming Effect on Information Retrieval in Bahasa Indonesia, Netherland,
Universiteit van Amsterdam, http://ucrel.lancs.ac.uk/acl/P/P00/P00-1075.pdf, diakses terakhir tanggal 25 Juli 2009.
[3] Lu, G. (1999). Multimedia Database Management Systems. Norwood. Artech House, Inc.
[4] Nazief, Bobby dan Mirna Adriani,  Confix-Stripping: Approach to Stemming Algorithm for Bahasa Indonesia,
Fakulty of Computer Science University of Indonesia.

sumber http://yudiagusta.files.wordpress.com/2009/11/196-201-knsi09-036-perbandingan-algoritma-stemming-porter-dengan-algoritma-nazief-adriani-untuk-stemming-dokumen-teks-bahasa-indonesia.pdf
ShowHideComments